PRODUCT SPECIFICATION AMPLIFIER MODULE AMS0100

FEATURE LIST

－ $2 \times 50 \mathrm{Wrms}$ into $4 Y$＠＠ 1% THD
－120Wrms BTL into 6Ý＠ 1% THD
－Patented AMS（adaptive modulation servo）amplifier technology
－ 100 kHz load independent frequency range（ -3 dB ）
－Almost flat THD vs frequency
－ $115 d B$ dynamic range
－Output impedance $<10 \mathrm{~m}$ Ý from 20 Hz to 20 kHz
－Differential inputs with 0.1% resistors for improved CMRR
－Automatic voltage doubler for universal mains
－Meets ErP and Energystar
－UL recognized
－CE approved
－＋／－14V AUX outputs
－AUX output for third hanger channel

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	1 of 35

A MEMBER OF THE ETAL GROUP

SCOPE

These technical specifications describes the functionalities and features of the Anaview amplifier module AMS0100，an integrated audio solution combining high－end amplifier and power supply technology，capable of delivering $2 \times 50 \mathrm{~W}$ into 4Ω＠1\％THD， $2 \times 25 \mathrm{~W}$ into 8Ω＠ 1% THD or $1 \times 120 \mathrm{~W}$ into 6Ω bridged．Short term RMS power 120 Wrms ．Typical applications are audio receivers，powered speakers and residential audio system．

DISCLAIMER

The data sheet contains specifications that may be subject to change without prior notice．Responsibility for verifying the performance，safety，reliability and compliance with legal standards of end products using this subassembly falls to the manufacturer of said end product．

ANAVIEW products are not authorized for use as critical components in life support devices or life support systems without the express written approval of the president of ETAL Group AB．As used herein：
1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body，or（b）support or sustain life，and whose failure to perform when properly used in accordance with instructions for use provided in the labelling，can be reasonably expected to result in a significant injury to the user．
2．A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	2 of 35

A MEMBER OF THE ETAL GROUP

GENERAL

Environmental conditions

Humidity	$5-85 \% \mathrm{RH}$ non condensing
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Regulations and compliances

EMC	Emission	Conducted Emission FCC 15V, Sec. 107 Class "B" Radiated Emission FCC 15V, Sec. 109 Class "B" Conducted Emission EN 55022 (2010) Class "B" Telecom Conducted Emission EN 55022 (2010) Class "B" Radiated Emission EN 55022 (2010) Class "B" Power Line Harmonics EN 61000-3-2 (2006) + A1 (2009) + A2 (2009) Power Line Flicker EN 61000-3-3 (2008)	$\begin{aligned} & 0.15 \mathrm{MHz}-30 \mathrm{MHz} \\ & 30 \mathrm{MHz}-1 \mathrm{GHz} \\ & 0.15 \mathrm{MHz}-30 \mathrm{MHz} \\ & 0.15 \mathrm{MHz}-30 \mathrm{MHz} \\ & 30 \mathrm{MHz}-1 \mathrm{GHz} \end{aligned}$
	Immunity	ESD Immunity IEC 61000-4-2 (2008) Radio Frequency Immunity IEC 61000-4-3 (2006) + A1 (2007) + A2 (2010) Electrical Fast Transient Immunity IEC 61000-4-4 (2004) + A1 (2010) Surge Immunity IEC 61000-4-5 (2005) RF Common Mode Immunity IEC 61000-4-6 (2008) Power Frequency Magnetic Field IEC 61000-4-8 (2009) Voltage Dips and Short Interruptions IEC 61000-4-11 (2004)	Criterion B Criterion A Criterion B Criterion B Criterion B Criterion A Criterion B and C
Safety	LVD	```IEC 60065:2001 + A1:2005 + A2:2010 EN 60065:2002 + A1:2006 + A11:2008 + A2:2010 + A12:2011 UL \(600657^{\text {th }}\) Ed. Revised 2012-09-21 CAN/CSA C22.2 No. 60065-03, \(1^{\text {st }}\) Ed., 2006-04 + A1:2006 + A2:2012```	
Power Loss	ErP Energy Star	Designed to enable system compliance with: 2005/32/EC - 1275/2008: Standby/Off Mode Loss, Annex II Point 1 Energy Star - Consumer Audio Products, Phase II	

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	3 of 35

A MEMBER OF THE ETAL GROUP

Miscellaneous product specifications

Cooling	Convection cooling
Mounting of the unit	See Figure 1 Board outline，dimensions
IEC Protection Class	Class II－Double insulation
Manufacturing according to workmanship standard	IPC－A－610，Revision D，February 2005

Model selection chart／ordering information

Model	Accepts Hanger Modulet	Application
AMS0100－2300		Auto ranging 2－channel amplifier with 5.5 V nominal standby supply meeting Energy Star／ErP．
AMS0100－2301		Auto ranging 2－channel amplifier with 4.5 V nominal standby supply meeting Energy Star／ErP．
AMS0100－2500		Auto ranging 2－channel amplifier with 5.5 V nominal standby supply meeting Energy Star／ErP and ability to power 3rd
		Enannel for 2．1 systems and BTL＋SE chatems ideal for 2－way LF／HF active
syster		
speakers．		

† Hanger Module Option－offers AUX VS＋and VS－high voltage rails to power an optional Hanger Module amplifier channel．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	4 of 35

A MEMBER OF THE ETAL GROUP

BLOCK DIAGRAM

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	5 of 35

A MEMBER OF THE ETAL GROUP

MAINS VOLTAGE

Absolute maximum ratings

Parameter	Comment	Min	Max	Unit
Mains input voltage	The module automatically selects between $115 / 230 \mathrm{~V}$ operation	-	264	VAC
Mains input freq.		45	63	Hz

Electrical specifications

Parameter	Comment	Min	Max	Unit
Recommended mains voltage range	For normal operation	95	240	VAC
Minimum mains starting voltage	Where all AUX supplies are available and amplifier is running.		90	VAC

AUDIO SPECIFICATIONS

Absolute maximum ratings

Parameter	Comment	Min	Max	Unit
Input signal single ended	Between IN_L+ and GND Between IN_L- and GND Between IN_R+ and GND Between IN_R- and GND	-	3	Vrms
Input signal balanced	Between IN_L+ and IN_L- Between IN_R+ and IN_R-	-	6	Vrms

Electrical specifications

Measured at $25^{\circ} \mathrm{C}$ ambient with no preheating unless otherwise specified

Parameter	Comment	Min	Typ	Max	Unit
Offset voltage	With open inputs	370	400	42	mV
Switching frequency	At idle with 4Ω load		350		kHz
Switching residual	At idle with 4Ω load		20.6		dB pk
Gain	At 1 kHz with 4Ω load		25		$\mu \mathrm{Vrms}$
Idle noise	Unweighted with 4Ω load		101		dB
SNR $1 \mathrm{~W} 8 \Omega$	$2.83 \mathrm{Vrms} /$ idle noise		98		dB
SNR $1 \mathrm{~W} 4 \Omega$	$2.0 \mathrm{Vrms} /$ idle noise		115		dB
Dynamic range 4Ω	$15 \mathrm{Vrms} /$ idle noise	55		dB	
Common mode rejection	IN+ and IN- connected together. 100 Hz signal applied to input. Rejection measured at the output.				

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	6 of 35

A MEMBER OF THE ETAL GROUP

Input impedance single ended（＊1）	Non symmetrical on positive and negative inputs	2.5		12.5	$\mathrm{k} \Omega$
Input impedance balanced（＊1）	Non symmetrical on positive and negative inputs	1.39		12.5	$\mathrm{k} \Omega$
Upper bandwidth limit	Point of－3dB vs gain at 1kHz with 4 load		100		kHz
Gain deviation	From 20Hz to 20kHz		-0.2		dB
Upper full power bandwidth（＊2）	Level calibrated at 1\％THD at 1 kHz.		20		kHz
Lower bandwidth limit（＊3）	Point of－3dB vs gain at 1kHz with 4 load		DC	Hz	
Recommended load impedance single ended	Recommended for optimized efficiency and audio performance	3	4	-	Ω
Recommended load impedance BTL	Recommended for optimized efficiency and audio performance	6	8	-	Ω
Output impedance＠ $100 H z$	Measuring output voltage while injecting 1Arms into output． 1 mV＝1m Ω		4	$\mathrm{~m} \Omega$	
Output impedance＠ 20 kHz	Measuring output voltage while injecting 1Arms into output． 1 mV＝1m Ω		4	$\mathrm{~m} \Omega$	

（＊1）The input impedance on IN＋and IN－is not identical and also different between channels．See application notes below for more information．
（＊2）Sustained operation at full power above this frequency may result in damage to the module．
（＊3）Requires symmetrical loading and signal generation on both channels．
Power specifications SE operation

Maximum output current	Measured with one period of 1kHz sine wave		10		Apk
Maximum long term output power into 8Ω	Measured with both channels driven＠ 1% THD $+N$		2×25		Wrms
Maximum long term output power into 4Ω	Measured with both channels driven＠ 1% THD +N		2×50		Wrms
Maximum long term output power into 3Ω	Measured with both channels driven＠ 1% THD N		2×60		Wrms
Maximum infinite output power into 8Ω	Measured with both channels driven in 45 ${ }^{\circ} \mathrm{C}$ ambient temperature．		2×6.25	Wrms	
Maximum infinite output power into 4Ω	Measured with both channels driven in 45 ${ }^{\circ} \mathrm{C}$ ambient temperature．		2×6.25	Wrms	
Maximum infinite output power into 3Ω	Measured with both channels driven in 45 ${ }^{\circ} \mathrm{C}$ ambient temperature．		2×7.5		Wrms
FTC power rating	1 hour pre heating with $1 / 8$ of specified power and subsequently		2×25	Wrms	

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	7 of 35

A MEMBER OF THE ETAL GROUP

into 8Ω	5 min. with specified power at $120 / 230 \mathrm{Vac}, 1 \mathrm{kHz}$ input, ambient temp. 25'C still air. Open frame. Board mounted vertically.			
FTC power rating into 4Ω	1 hour pre heating with $1 / 8$ of specified power and subsequently 5 min. with specified power at $120 / 230 \mathrm{Vac}, 1 \mathrm{kHz}$ input, ambient temp. 25'C still air. Open frame. Board mounted vertically.		2×50	
FTC power rating into 3Ω	1 hour pre heating with $1 / 8$ of specified power and subsequently 5 min. with specified power at $120 / 230 V a c, 1 \mathrm{kHz}$ input, ambient temp. 25'C still air. Open frame. Board mounted vertically.		2×45	
Max short term RMS power into 8Ω	500 ms of 1 kHz sine wave @ 1% THD.		30	
Max short term RMS power into 4Ω	500 ms of 1 kHz sine wave @ 1% THD.		56	Wrms
Max short term RMS power into 3Ω	500 ms of 1 kHz sine wave @ 1% THD.		67	

Power specifications BTL operation

Maximum long term output power into 8Ω	Measured with both channels driven @ 1% THD+N	100	Wrms
Maximum long term output power into 6Ω	Measured with both channels driven @ 1% THD+N	120	Wrms
Maximum continuous output power into 8Ω	Measured in $45^{\circ} \mathrm{C}$ ambient temperature.	15	Wrms
Maximum continuous output power into 6Ω	Measured in $45^{\circ} \mathrm{C}$ ambient temperature.	12.5	Wrms
FTC power rating into 8Ω	1 hour pre heating with $1 / 8$ of specified power and subsequently 5 min . with specified power at $120 / 230 \mathrm{Vac}, 1 \mathrm{kHz}$ input, ambient temp. 25'C still air. Open frame. Board mounted vertically.	100	Wrms
FTC power rating into 6Ω	1 hour pre heating with $1 / 8$ of specified power and subsequently 5 min . with specified power at $120 / 230 \mathrm{Vac}, 1 \mathrm{kHz}$ input, ambient temp. 25 'C still air. Open frame. Board mounted vertically.	90	Wrms
Max short term RMS power into 8Ω	$\begin{aligned} & 500 \mathrm{~ms} \text { of } 1 \mathrm{kHz} \text { sine wave @ } \\ & 1 \% \text { THD. } \end{aligned}$	100	Wrms
Max short term RMS power into 6Ω	500 ms of 1 kHz sine wave @ 1% THD.	123	Wrms

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified::	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	8 of 35

A MEMBER OF THE ETAL GROUP

DIAGNOSTIC SIGNALS

Diagnostics outputs	Output type	Voltage range		I Max cont.	Function
		Min	Max		
nPROT	Open drain with 2 kohm in series(*1)	N/A	$\mathrm{VA}+(* 3)$	5 mA	Signals during: - Over voltage shutdown - VA+/- fuse is blown - Startup until rails are OK
nCLIP_L	Open drain with 2 kohm in series(*1)	N/A	$\mathrm{VA}+(* 3)$	5 mA	Signals when the output generates $>0,1 \%$ THD $+N$
nCLIP_R	Open drain with 2 kohm in series(*1)	N/A	VA+(*3)	5 mA	Signals when the output generates $>0,1 \%$ THD $+N$
nOTP	Open drain with 2 kohm in series(*1)	N/A	$\mathrm{VA}+(* 3)$	5 mA	Signals when the hottest component reaches approx $110^{\circ} \mathrm{C}$
TEMP_OUT	Linear(*2)	0	3.5	5 mA	Displays the temperature of the hottest component inside AMS0100

(*1) Open drain outputs with 2 kohm in series to limit the current.
(*2) The TEMP_OUT output is a linear signal with 1 kohm in series to limit the current.
(*3) Recommended maximum voltage to which a pull up resistor should be connected.
Proposed interfaces

Diagnostics output	AMS0100 output circuit	Proposed interface
nPROT, nCLIP_L, nCLIP_R, nOTP. The MOSFET $2 N 7002$ is turned on during the corresponsing situations.		
TEMP_OUT This output shows the temperature of the hottest position inside the module. Internal supervision shuts down the amplifiers when this output reaches 2.86 V which corresponds to $100^{\circ} \mathrm{C}$.		

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	9 of 35

A MEMBER OF THE ETAL GROUP

Temp out

The below graph shows how the output signal TEMP_OUT follows the hottest component in the AMS0100 module. X -axis is voltage and Y -axis is temperature in ${ }^{\circ} \mathrm{C} .2 .86 \mathrm{~V}$ on TEMP_OUT signal is shut down threshold.

The temperature can also be described using the formula below
TEMP=(3428/LN(53532-(15851*TEMP_OUT)))-273,15

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	10 of 35

A MEMBER OF THE ETAL GROUP

CONTROL INPUTS

Absolute maximum ratings

Parameter	Comment	Min	Max	Unit
nDISABLE		0	VA +	V
nMUTE		0	VA +	V

Electrical specifications

Parameter	Comment	Min	Typ	Max	Unit
nDISABLE activation threshold	Threshold for disabling the AMS0100 module (active low)	1.0	2.0	2.75	V
nDISABLE deactivation threshold	Threshold for enabling the AMS0100 module	1.0	2.0	2.75	V
nDISABLE activation time	Time from setting nDISABLE low to amplifier stop		2		ms
nDISABLE deactivation time 230VAC	Time from setting nDISABLE high to amplifier start		1000		ms
nDISABLE deactivation time 115VAC	Time from setting nDISABLE high to amplifier start		2200	3000	ms
nMUTE activation threshold	Threshold for muting the AMS0100 module (active low). 30\% of VA+.		$0.3 \times$ VA+		V
nMUTE deactivation threshold	Threshold for unmuting the AMS0100 module. 70\% of VA+.		$0.7 \times$ VA+	V	
nMUTE activation time	Time from setting nMUTE low to amplifier stop		ms		
nMUTE deactivation time	Time from setting nMUTE high to amplifier start		8	ms	

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	11 of 35

A MEMBER OF THE ETAL GROUP

Proposed interfaces

Control signal	AMS0100 input circuit	Proposed interface
nMUTE When this input is pulled down the amplifiers are muted. The Schmitt trigger has CMOS thresholds and is supplied by VA+ meaning the "high to low" threshold is 70\% of VA+ and the "low to high" threshold is 30% of VA+.		
nDISABLE The entire module is turned off and put in standby mode when this input is pulled down. During this state, only the STBY_DC output is available. The internal gate pull up resistor is pulled up to STBY_DC.		

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	12 of 35

A MEMBER OF THE ETAL GROUP

AUXILIARY SUPPLIES

AUX outputs	Nom. voltage	Voltage fluctuation		I Max cont.	Comments
		Min	Max		
$\begin{aligned} & \text { STBY_DC output } \\ & \text { supply } \\ & \text { AMS0100-2300 } \\ & \text { AMS0100-2500 } \end{aligned}$	+5.5VDC	+4.0VDC	+6.4VDC	200mA	25 mA for $<0,5 \mathrm{~W}$ standby consumption
STBY_DC output supply AMS0100-2301	+4.5VDC	+3.6VDC	+5.5VDC	200 mA	25 mA for $<0,5 \mathrm{~W}$ standby consumption
AUX output supply voltage VA+(*1) No signal to 20 Hz full power output 90264VAC	+14VDC	+6.0VDC	+16.5VDC	$600 \mathrm{~mA} * 2)$	Max capacitive load 330uF
AUX output supply voltage VA-(*1) No signal to 20 Hz full power output 90264VAC	-14VDC	-6.0VDC	-16.5VDC	$600 \mathrm{~mA} * 2)$	Max capacitive load 330uF
AUX output supply voltage VS+(*1) No signal to 20 Hz full power output 90264VAC	+26VDC	+12.5VDC	+30.0VDC	250mA *3)	Optional feature. Only for supplying Anaview hanger module
AUX output supply voltage VS-(*1) No signal to 20 Hz full power output 90264VAC	-26VDC	-12.5VDC	-30.0VDC	250mA *3)	Optional feature. Only for supplying Anaview hanger module

(*1) The AUX outputs are unregulated and vary with load and AC input voltage.
(*2) Maximum continuous output current on VA+ and VA- is in sum 600 mA . This allows for any load combination between the two outputs in total giving 600 mA , i.e at most 600 mA on one and 0 mA at the other.

If these outputs are shorted a fuse (F200) blows and has to be replaced, see page 31.
(*3) Maximum continuous output current on VS+ and VS- is fused to 250 mA each. These outputs should only be used to power a high frequency ($>500 \mathrm{~Hz}$) $50 \mathrm{~W} 4 \Omega$ hanger module.

STBY_DC vs load current

The standby voltage is only softly regulated and hence varies with the load current.

AUX outputs	Voltage fluctuation		Load range
	Min	Max	
AUX output supply voltage STBY DC AMSO100-2300 AMSO100-2500	+4.0 VDC	+6.4 VDC	0 to 200 mA
	+4.8 VDC	+5.9 VDC	2 to 20 mA

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	13 of 35

A MEMBER OF THE ETAL GROUP

POWER CONSUMPTION AND EFFICIENCY

Idle and standby consumption

Parameter	Comment	Min	Typ	Max	Unit
Idle consumption at 230VAC	nMUTE and nDISABLE set high at 230VAC with no load on VA+/VA or STBY_DC		5.3		W
Idle consumption at 115VAC	nMUTE and nDISABLE set high at 230VAC with no load on VA+/VA or STBY_DC		5.7		W
Standby consumption at 230VAC, unloaded	nDISABLE se low at 230VAC with no load on STBY_DC		180		mW
Standby consumption at 115VAC, unloaded	nDISABLE set low at 115VAC with no load on STBY_DC		63		mW
Standby consumption at 230VAC, loaded	nDISABLE set low at 230VAC with 25mA load on STBY_DC		450		mW
Standby consumption at 115VAC, loaded	nDISABLE set low at 115VAC with 25mA load on STBY_DC		340		mW

Maximum load for ErP and Energy Star compliance

Compliance	Comment	STBY_DC	VA+/-	
ErP compliance	Maximum load to ensure <500mW standby consumption. Measured at 230VAC.	25	-	mA
Energy star	Maximum load (VA+ and VA- combined) to ensure <10W total idle consumption. Measured at $115 / 230 \mathrm{VAC}$	25	240	mA

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	14 of 35

A MEMBER OF THE ETAL GROUP

Efficiency

Into $4 \mathbf{Y}$ at 230 VAC and 115 VAC

TIMING CHARTS

230 V switch on

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	15 of 35

A MEMBER OF THE ETAL GROUP

115 V switch on

Mains switch off

Note: Nominal load on VA+/- and STBY_DC

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	16 of 35

A MEMBER OF THE ETAL GROUP
nDISABLE @ 230V

nDISABLE @ 115V

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	17 of 35

A MEMBER OF THE ETAL GROUP
nMUTE

PROTECTION

Mains input fuse	T1．6AE Littelfuse 38211600000
Over temperature protection	Amplifier shut down by over temperature． Threshold temperature ： $102(\mathrm{~min})-107($ typ $)-112(\mathrm{max})^{\circ} \mathrm{C}$ TEMP＿OUT is 2．86V at shut down． Sensor connected to power FETs of amplifier channels and to rectifier diodes in the power supply．
Over voltage protection	Power shut down by over voltage on output voltage rail．This can occur during severe railpumping or a mains voltage above 264VAC．
Over current protection	Current limit threshold： $10 \mathrm{Apk}(0.5 \Omega$ load， 1 kHz burst $)$. Power shut down when over current limit persists．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	18 of 35

A MEMBER OF THE ETAL GROUP

CONNECTIONS

Connector	Connector type	Mating connector
CON1 (mains)	2-pin, 0.312" (7.92mm) locking header JST S2P3-VH (LF) (SN)	JST VHR-3N Crimp terminal SVH-41T-P1.1
CON2 (signal)	$17-$ pin dual Z-row connector JST S17B-CZHK-B-1	JST 17CZ-6H Crimp terminal SCZH-002T-P0.5
CON3,4 (speakers)	2pin 0.156" (3.96mm) locking header JST S2P-VH (LF) (SN)	JST VHR-2N Crimp terminal SVH-41T-P1.1
CON3001 (hanger)	3 pin 0.156" (3.96mm) locking header JST B3P-VH (LF) (SN)	JST VHR-3N Crimp terminal SVH-41T-P1.1

Mains voltage connector (CON1)

1	AC_N	Neutral
2	AC_L	Live

Signal connector pinning (CON2)

1	IN_R-	Right audio channel negative input.
2	IN_R+	Right audio channel positive input.
3	GNDs	Secondary side ground
4	IN_L-	Left audio channel negative input.
5	IN_L+	Left audio channel positive input.
6	GNDs	Secondary side ground
7	TEMP_OUT	Linear temp output signal.
8	nOTP	Over temp shutdown output signal.
9	nPROT	PSU shutdown output signal.
10	nCLIP_R	Clip detect output signal.
11	nCLIP_L	Clip detect output signal.
12	nMUTE	Mute input signal.
13	nDISABLE	Standby mode activation signal.
14	VA-	AUX output voltage VA-
15	GNDs	Secondary side ground
16	VA+	AUX output voltage VA+
17	STBY_DC	AUX output voltage STBY_DC

Left speaker connector (CON3)

1	OUT_L+	Left audio channel positive output.
2	OUT_L-	Left audio channel negative output.

Right speaker connector (CON4)

1	OUT_R+	Right audio channel positive output.
2	OUT_R-	Right audio channel negative output.

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	19 of 35

A MEMBER OF THE ETAL GROUP

Hanger connector (CON3001)

1	VS-	AUX output voltage VS+
2	GNDs	Secondary side ground.
3	VS+	AUX output voltage VS-

MECHANICAL OUTLINE

Size (I x w x h)	$130 \times 75 \times 30 \mathrm{~mm}$, see Figure 1. Board outline, dimensions below. Max component height/lead length on PCB bottom side: 4.0 mm 30 mm height measured from bottom side of PCB to highest component on top side. For total height of unit add the 4 mm max component height/lead length on PCB bottom side, i.e. 34 mm.
Weight	$170-180 \mathrm{~g}$ depending on model
Mounting hole dia.	$\mathrm{X} 1, \mathrm{X} 2$ (non-plated): 3.5 mm $\mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5$ (plated): 3.5 mm
IP figures, encapsulation IP XY ($\mathrm{X}=$ Solids, $\mathrm{Y}=$ Liquids)	Open frame
Coloring, design and branding	AMS0100-2X00, black PCB

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	20 of 35

Figure 1. Board outline, dimensions and mounting holes.

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	21 of 35

A MEMBER OF THE ETAL GROUP

AUDIO MEASUREMENTS

Gain and phase vs frequency

Figure 2. Frequency response 4Ω (red), 8Ω (blue) and open (cyan)

Figure 3. Phase response 4Ω (magenta), 8Ω (black) and open (green).

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	22 of 35

ヘNヘVIミW

A MEMBER OF THE ETAL GROUP

THD vs power both channels driven and single channel driven

Anaview is here showing the THD vs power measurement with two channels driven and one channel driven．The reason for this is that in applications where both channels are driving similar loads，like in a stereo amplifier，the power supply is loaded by both channels and therefore limits how much total power that can be output．In an active 2－ way speaker，which is quite a common application，only one channel drives a heavy load （the bass driver）and the other channel delivers a significantly lower RMS－power into the tweeter．

Both channels driven（stereo applications）and BTL

Note：Red is＠ 100 Hz ，Magenta is＠ 1 kHz and blue is＠ $6,67 \mathrm{kHz}$

Figure 4．THD vs power $4 \Omega, 230 \mathrm{VAC}$ ，both channels driven

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	23 of 35

A MEMBER OF THE ETAL GROUP

Figure 5．THD vs power $8 \Omega, 230 \mathrm{VAC}$ ，both channels driven．

Figure 6．THD vs power， $4 \Omega, 115 \mathrm{VAC}$ ，both channels driven．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	24 of 35

ヘNヘVIミW

A MEMBER OF THE ETAL GROUP

Figure 7．THD vs power， $8 \Omega, 115 \mathrm{VAC}$ ，both channels driven．

Figure 8．THD vs power， $4 \Omega, 90 \mathrm{VAC}$ ，both channels driven．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	25 of 35

ヘNヘVIミW

A MEMBER OF THE ETAL GROUP

Figure 9．THD vs power， $8 \Omega, 90 \mathrm{VAC}$ ，both channels driven．

Figure 10．THD vs power， 6Ω BTL，230VAC．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	26 of 35

ヘNヘVIミW

A MEMBER OF THE ETAL GROUP

Single channel driven（active speaker application）

Note：Red is＠ 100 Hz ，Magenta is＠ 1 kHz and blue is＠ $6,67 \mathrm{kHz}$

Figure 11．THD vs power， $4 \Omega, 230 \mathrm{VAC}$ single channel driven．

Figure 12．THD vs power， $8 \Omega, 230$ VAC single channel driven．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	27 of 35

ヘNヘVIミW

A MEMBER OF THE ETAL GROUP

Figure 13．THD vs power， $4 \Omega, 115 \mathrm{VAC}$ single channel driven．

Figure 14．THD vs power， $8 \Omega, 115 \mathrm{VAC}$ single channel driven．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	28 of 35

ヘNヘVIミW

A MEMBER OF THE ETAL GROUP

Figure 15．THD vs power， $4 \Omega, 90 \mathrm{VAC}$ single channel driven．

Figure 16．THD vs power， $8 \Omega, 90 \mathrm{VAC}$ single channel driven．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	29 of 35

A MEMBER OF THE ETAL GROUP

Output impedance and crosstalk

Figure 17. Output impedance $1 \mathrm{mV}=1 \mathrm{~m} \Omega$.

Figure 18. Crosstalk at 1W (magenta) and 10W (red).

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified::	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	30 of 35

INSTRUCTIONS

Replacing VA+/VA- fuse

The auxiliary supplies VA+/- are protected by a surface mounted fuse. In case of overload this fuse will open and has to be replaced to get the supplies back.

F200 is a 4A fuse from Littelfuse with article number 0440004.WR.
The maximum load on VA+/- can be seen in the table on page 13. The fuse value of 4A was choosen to tolerate the start-up charge energy of a capacitive load.

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	31 of 35

ヘNヘVIミW

A MEMBER OF THE ETAL GROUP

APPLICATION NOTES

Optimizing input stage CMRR

This is simplified drawing of the input of AMS0100．It is a typical circuit which is often used where the source impedance is well known and does not vary too much．Input currents are calculated when a balanced signal is applied．As can be seen the input impedance is not the same on both inputs and depending on which type of signal is applied（single ended or balanced）the input impedance changes．

This is however not a problem as long as a few precautions are made．Common mode rejection CMRR will be significantly improved by having the same source resistance on both the inputs．

Impedance balancing with single ended signal

Below is shown a setup with an impedance balanced single ended source．This requires a balanced cable．

It is quite common to have a series resistance of 50 ohm or more on the signal output so if the same resistance is placed in the opposite side of the signal of either sending or receiving side of the cable the CMRR rejection is intact．

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	32 of 35

A MEMBER OF THE ETAL GROUP

Balanced input signal

If a balanced signal source is used the following setup applies.
AMS0100

If long cables are used the cable impedance itself can contribute a lot to the series impedance and since that impedance is not very well defined (symmetrically) it can be an advantage to increase both the diff mode and common mode input impedance. In such a case an additional circuit as below can be added before the AMS module.

Article Number:	PDS-AMS0100	Prepared:	MC
Document Date:	$2013-07-22$	Verified:	JN
Current Revision no.:	K	Approved:	MC
Current Revision Date:	$2015-02-05$	Page Number:	33 of 35

A MEMBER OF THE ETAL GROUP

BTL setup

SE input signal

Balanced input signal

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	34 of 35

A MEMBER OF THE ETAL GROUP

REVISION LOG

Rev．	Date	Item	Sign
A	$2013-07-22$	First official released revision．	PB
B	$2013-09-04$	Revised timing，audio specifications．	JN
C	$2013-09-20$	Revised temp specs，cleanup．	PB
D	$2013-10-02$	Cleanup．	JN
E	$2013-10-15$	Changed Safety standards．	PB
F	$2013-10-29$	Changed to maximum 330uF capacitive load for VA＋／－． Revised contact information．	MC
G	$2013-11-28$	Changed STBY＿DC voltage level vs load current Removed graphs for STBY＿DC vs load current in disabled and enabled mode Changed maximum STBY＿DC load to 25mA for ErP Updated Emission standards Changed the Weight from 140－150g to 170－180g Updated amendments in EMC compliances Changed ErP standby currents Disclaimer added	PB
H	$2013-12-04$	Added AMS0100－2301 as variant Updated info about auxiliary supplies VA＋－voltage fluctuation updated AUX VS＋－voltage fluctuation updated Energy star current updated	JN
I	$2014-02-06$	Instruction added on VA＋／－fuse replacement	
J	$2014-06-03$	nDISABLE thresholds updated Updated information about VA＋／－fuse	PB
K	$2015-02-05$	Corrected nMUTE timing graph and added max offset voltage	PB

ANAVIEW CONTACT INFORMATION

For further information about Anaview＇s products and technology please contact：
Email：info＠anaview．com
Website：www．anaview．com

Anaview（Europe，APAC）

Södergatan 4
25225 Helsingborg Sweden

Anaview（North America）

PO Box 459
Manasquan，NJ 08736
New Jersey
USA

Part of

ETAL Group AB
Fagerstagatan 3
SE－163 53 SPÅNGA SWEDEN

Article Number：	PDS－AMS0100	Prepared：	MC
Document Date：	$2013-07-22$	Verified：	JN
Current Revision no．：	K	Approved：	MC
Current Revision Date：	$2015-02-05$	Page Number：	35 of 35

