

15B100R-GH

LOW FREQUENCY TRANSDUCER

KEY FEATURES

- 800 W program power
- Sensitivity: 98 dB @ 2,83 V @ 1 m
- Extended controlled displacement: X_{max} ± 6 mm
- Extended mechanical displacement capability:
 X_{damage} ± 25 mm
- Single roll foam surround.

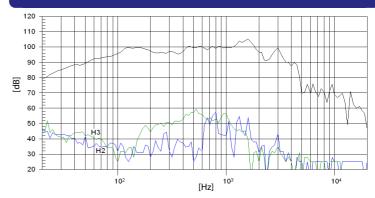
TECHNICAL SPECIFICATIONS

381 mm 15 in
8 Ω
6,9 Ω
400 W _{RMS}
800 W
98 dB 2,83v @ 1m @ 2π
40 - 4.500 Hz
40 / 150 l 1,41 / 5,3 ft ³
100,7 mm 4 in
9 kg 19,84 lb
21,8 N/A
0,119 kg
15,5 mm
10 mm
50 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	30 Hz
D.C. Voice coil resistance, R _e	5,4 Ω
Mechanical Quality Factor, Q _{ms}	10,894
Electrical Quality Factor, Q _{es}	0,258
Total Quality Factor, Q _{ts}	0,252
Equivalent Air Volume to C _{ms} , V _{as}	248,96 I
Mechanical Compliance, C _{ms}	230 μm / N
Mechanical Resistance, R _{ms}	2,09 kg / s
Efficiency, η ₀	2,60 %
Effective Surface Area, S _d	0,088 m ²
Maximum Displacement, X _{max} ***	6 mm
Displacement Volume, V _d	492,8 cm ³
Voice Coil Inductance, Le @ 1 kHz	1,6 mH

Notes:


MOUNTING INFORMATION

Overall diameter	388 mm	15,28 in
Bolt circle diameter	370 mm	14,57 in
Baffle cutout diameter:		
- Front mount	352 mm	13,86 in
- Rear mount	355 mm	13,98 in
Depth	145 mm	5,71 in
Volume displaced by driver	7 I	0,25 ft ³
Net weight	10,2 kg	22,4 lb
Shipping weight	11,1 kg	24,4 lb

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap