

SPECIFICATIONS

SW182BD01/02 7" die cast, alu-cone subwoofers, 4/8 ohm

The 7" transducers SW182BD01 (4 ohm) and SW182BD02 (8 ohm) were designed specifically for high performance compact subwoofer applications where sound quality and low distortion are the priorities.

FEATURES

- Balanced Drive motor structure for optimal drive force symmetry resulting in largely reduced even order harmonic distortion
- Extremely large linear stroke, Xmax = ± 8 mm, ensuring low distortion at high output levels
- Very rigid black aluminium cone to ensure piston motion at high levels and for better heat transfer at high continuous power levels
- Rigid die cast alu chassis with extensive venting for lower air flow speed reducing audible distortion
- Vented voice coil former for reduced distortion and compression
- Vented center pole with dual flares for reduced noise level at large cone excursions
- Heavy-duty black fiber glass voice coil former to reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor with 11/2" voice coil diameter for better control and power handling
- Built-in alu field-stabilizing ring for reduced distortion at high levels
- Low-loss suspension (high Qm) for better reproduction of details and dynamics
- · Black plated cone and motor parts for better heat transfer to the surrounding air
- Conex spider for better durability under extreme conditions
- · Gold plated terminals to ensure long-term trouble free connection

NOMINAL SPECIFICATIONS

		SW182BD01		SW182BD02		
Notes	Parameter	Before	After	Before	After	Unit
		burn-in	burn-in	burn-in	burn-in	
	Nominal size	7 7		7	[inch.]	
	Nominal impedance	4		8		[ohm]
	Recommended max. upper frequency limit	5	500 500		[Hz]	
1, 3	Sensitivity, 2.83V/1m (calculated from T/S parameters)	85.5		83.5		[dB]
2	Power handling, short term, IEC 268-5, no additional filtering					[W]
2	Power handling, long term, IEC 268-5, no additional filtering					[W]
2	Power handling, continuous, IEC 268-5, no additional filtering	125		125		[W]
	Effective radiating area, Sd	1	31	1	31	[cm²]
3, 6	Resonance frequency (free air, no baffle), Fs	31	26.5	33	30	[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	49 43		3	[g]	
3	Force factor, Bxl	8.5		11.5		[N/A]
3, 6	Suspension compliance, C _{ms}	0.54	0.74	0.54	0.74	[mm/N]
3, 6	Equivalent air volume, Vas	13	18	13	18	[lit.]
3, 6	Mechanical resistance, Rms	0.53	1.1	0.53	1.1	[Ns/m]
3, 6	Mechanical Q, Q _{ms}	17.5	8.5	16.5	8	[-]
3, 6	Electrical Q, Qes	0.42	0.36	0.43	0.37	[-]
3, 6	Total Q, Qts	0.41	0.35	0.42	0.36	[-]
4	Voice coil resistance, RDC	3.2		6.4		[ohm]
5	Voice coil inductance, Le (measured at 1 kHz)	1.5 39 21		2.5		[mH]
	Voice coil inside diameter			39		[mm]
	Voice coil winding height			21		[mm]
	Air gap height	5		5		[mm]
	Magnet weight	640		640		[g]
	Total unit net weight excl. packaging	1.85		1.85		[kg]
3, 5	K _{rm}	6.4		5.4		[mohm]
3, 5	E _{rm}	0.74		0.80		[-]
3, 5	K _{xm}	13.6		20		[mH]
3, 5	E _{xm}	0.72		0.73		[-]

Note 1 Measured in infinite baffle.

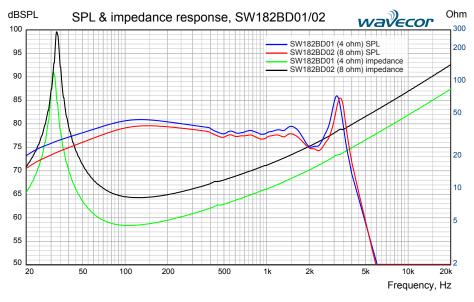
ote 2 Tested in free air (no cabinet).

Note 3 Measured using a semi-constant current source, nominal level 2 mA.

Note 4 Measured at 20 deg. C

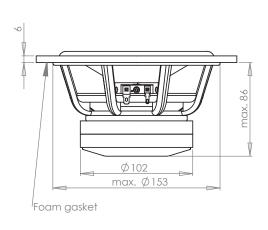
Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{rm}, E_{rm}, K_{xm}, and E_{xm}. This more accurate transducer model is described in a technical paper here at our web site.

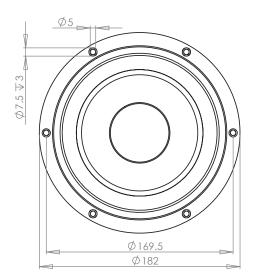
Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 10/14.1 VRMS (4/8 ohm version). The unit is not burned in before shipping.


Specifications are subject to change without any further notice. Copyright © 2009 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit www.Wavecor.com

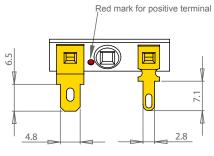
SPECIFICATIONS

SW182BD01/02 7" die cast, alu-cone subwoofers, 4/8 ohm




Measuring conditions, SPL
Driver mounting: Flush in infinite
baffle, back side open (no cabinet)
Microphone distance: 1.0 m
Input signal: 2.83 VRMS stepped sine
wave

Smoothing: 1/6 oct.


Measuring conditions, impedance
Driver mounting: Free air, no baffle,
back side open (no cabinet)
Input signal: Stepped sine wave, semicurrent-drive, nominal current 2 mA
Smoothing: None

OUTLINE DRAWING (nominal dimensions, mm)

CONNECTIONS

Thickness, both terminals: 0.5 mm Terminal plating: Gold

PACKAGING AND ORDERING INFORMATION

Part no. SW182BD01-01	4 ohm version, individual packaging (one piece per box)			
Part no. SW182BD01-02	4 ohm version, bulk packaging			
Part no. SW182BD02-01	8 ohm version, individual packaging (one piece per box)			
Part no. SW182BD02-02	8 ohm version, bulk packaging			

Latest update: September 8, 2010

Specifications are subject to change without any further notice. Copyright © 2009 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**